头部企业、银行中报,透露金融业大模型进展
发布时间:2023-10-07
摘要: 历经了上半年激烈而又多元的大模型论战之后,下半年的焦点终于到了“落地”层面。通用大模型仍在含苞待放,垂直领域的专业大模型开始崭露头角。在金融领域,投研决策、数据分析、智能交互等业务方向涌现出多个大模型,各类金融机构与科技公司大显身手,一同推动了金融大模型的快速落地。3月底,彭博社发布拥有500亿参数的大型语言模型 BloombergGPT,标志着全球首个金融大模型的诞生;5月,星环科技推出第一款面

历经了上半年激烈而又多元的大模型论战之后,下半年的焦点终于到了“落地”层面。通用大模型仍在含苞待放,垂直领域的专业大模型开始崭露头角。

image.png

在金融领域,投研决策、数据分析、智能交互等业务方向涌现出多个大模型,各类金融机构与科技公司大显身手,一同推动了金融大模型的快速落地。

3月底,彭博社发布拥有500亿参数的大型语言模型 BloombergGPT,标志着全球首个金融大模型的诞生;5月,星环科技推出第一款面向金融量化领域的生成式大语言模型“无涯Infinity”,度小满推出国内首个千亿级中文金融大模型“轩辕”;6月,恒生电子发布金融行业大模型LightGPT......

时间来到8月底,马上消费金融发布了零售金融大模型“天镜”,紧接着蚂蚁集团于9月8日正式发布了金融大模型及基于金融大模型能力的两款产品“支小宝2.0”与“支小助”。此外,作为金融行业的主体,部分银行也开始了对大模型的探索,我们也可以从中报以及高层公开演讲中窥见一二。

在金融数字化转型加速的大背景下,更多金融细分领域的大模型已在路上。本文从蚂蚁集团、马上消费金融已发布的金融大模型谈起,结合银行中报透露的大模型相关研究和布局情况,佐以业内专家、高管的最新看法,来探讨金融领域的大模型发展趋势,供读者参考。

01

关于金融大模型,蚂蚁集团、马上消费还有哪些问题没解决?

金融业是典型的创新驱动型和数据、技术密集型行业,在ChatGPT引爆AIGC技术应用和金融机构数字化转型逐渐深化的当下,金融业必然成为AIGC落地的“试验田”和“前沿阵地”。据不完全统计,当前金融领域各类大模型已超过20个。

1、蚂蚁金融大模型,解决产业真命题?

9月8日,在上海举行的外滩大会上,蚂蚁集团正式发布了蚂蚁金融大模型。据了解,蚂蚁金融大模型基于蚂蚁自研基础大模型,针对金融产业深度定制,底层算力集群达到万卡规模。

当天,蚂蚁集团同时发布了基于金融大模型能力的两款产品:智能金融助理“支小宝2.0”,服务金融产业专家的智能业务助手“支小助”。

据介绍,蚂蚁集团在2021年就已经关注到了大模型,目前,基于蚂蚁基础大模型,针对金融产业深度定制的蚂蚁金融大模型已在蚂蚁集团的财富、保险产品上展开内测。

“通用大模型无法在专业严谨的领域直接商用,特别是金融服务对错误的容忍度很低,金融大模型要确保领域知识和专业逻辑的严谨性,才能真正落地带来产业价值。知识力、专业力、语言力以及安全力,保障四大能力是前提条件,也是金融大模型要解的产业真命题。”蚂蚁集团副总裁、金融大模型负责人王晓航介绍,基于金融场景中的大量实践,蚂蚁金融大模型形成了“大模型+知识+服务”驱动的架构,这套架构已经在蚂蚁内部金融智能化场景上内测。

蚂蚁集团表示,未来将持续探索和精进大模型的五大能力方向。一是,建设高质量的数据标注团队,沉淀高质量数据体系;二是,攻坚基础大模型算法,以及高效绿色工程能力,提升模型逻辑推理等能力;三是,从通用语言大模型到通用多模态大模型,从一般通识走向全面专业;四是,建设高效的大模型评测标准和评测体系,加快大模型迭代速度;五是,建设大模型安全能力,保障大模型健康可持续发展。

2、拆解天镜:如何做好金融大模型?

8月28日,马上消费金融发布了其零售金融大模型——“天镜”,这是零售金融领域首个大模型,它面向金融大模型的可信与安全两大核心难题。

要推动金融大模型的发展,其核心痛点是如何在数据融合应用和安全保护间取得平衡。

围绕这一痛点,马上消费“天镜”大模型提供了四点思路。第一是要真正解决企业尤其是零售金融企业的核心痛点问题;第二是要基于团队合作的精神,让大模型和已有的系统与模型融合,成为功能更强、解决问题更多的大模型;第三,在与业务结合的过程中要做到安全合规;第四,要主动适应现有的系统。

基于这种设计思路,马上消费CTO蒋宁介绍,“天镜”大模型问世后,仍面向人工智能的四个关键难题。

第一,关键性任务与动态适应性。一言以蔽之,大模型要在特定任务中,基于海量模型与分析能力,不管外界环境怎么变化,始终能保持决策准确性。

第二,个性化要求和隐私保护。金融行业需要为用户提供个性化服务,这样的服务在使用个人数据时会涉及个人隐私数据保护问题。

第三,群体智能与安全可控。蒋宁认为,美国大模型保持领先的其中一个因素在于已经形成了完整生态,而中国暂时没有形成完整生态,很难形成群体智慧。一面要积累群体数据,最终形成正向反馈,共建行业模型;另一面也要基于可信安全,对数据是否可共享做出明确区分,保证共享数据的安全可靠。

第四,基础设施的能力挑战。金融大模型需要的运算架构不一样,要不断优化底层基础设施,以适应垂直领域、金融领域大模型的发展。

蒋宁提及三个思考方向:一是大模型的持续学习能力,实现越用越聪明;二是强化鲁棒性决策,实现金融领域要求的100%合规与安全,保证金融大模型在任何场景下能够实现可信、安全、稳定的输出结果;三是组件式AI,要将金融大模型的自适应能力、机器分辨能力、语言理解能力、声音感知能力进行整合,构建新兴的金融大模型体系。

02‍

9家银行中报关于大模型的描述,透露了什么?

随着 “中报季”收官,上市银行2023年半年报也已披露完毕。零壹智库在《七大指标对比:有的银行业绩塌房,有的“很行”》一文中对42家上市银行上半年业绩指标进行观察分析,从科技投入角度来看,有6家银行披露了科技及科技人员投入情况,9家明确表明大模型探索战略。

具体来看,工商银行农业银行中国银行交通银行招商银行中信银行兴业银行江苏银行浙商银行等9家银行在半年报中提及,正在探索大模型应用。

表1:上市银行2023H1财报中关于大模型的表述

 头部企业、银行中报,透露金融业大模型进展

数据来源:企业预警通,零壹智库

今年3月,工商银行基于昇腾AI发布了首个金融行业通用模型。在发布会上,工行宣布该模型已应用在客户服务、风险防控、运营管理领域。比如,工行应用该模型支撑智能客服接听客户来电;再比如,利用金融大模型,对工业工程融资项目建设进行进度监测。

据中国工商银行首席技术官吕仲涛在“2023中国智能金融论坛”上透露,工商银行经过5年多的建设,目前已经沉淀人工智能模型3000余个,包括传统机器学习模型、传统深度学习模型和大模型三类。

他表示,从趋势来看,大模型随通用能力增强,将逐步超越传统模型的能力,但受制于计算复杂度高、可解释性差等问题,短期内,大模型和传统模型会共存,同时,大模型强大的语义理解能力使其可作为中控,将传统模型作为技能进行调用。

同样在3月,农业银行推出金融行业首个自主创新的金融AI大模型应用ChatABC。据悉,ChatABC重点着眼于大模型在金融领域的知识理解能力、内容生成能力以及安全问答能力,对于大模型精调、提示工程、知识增强、检索增强、人类反馈的强化学习(RLHF)等大模型相关新技术进行了深入探索和综合应用。

招商银行方面,半年报显示,加快新技术应用推广,提升GPT类自然语言处理大模型的建设能力,并重点发掘其在全流程财富管理中的应用,投产FinGPT创意中心,加快大模型应用模式探索。

据悉,招行目前已打造了一支近300人的人工智能团队,全行累计立项金融科技创新项目3494个,累计上线项目2687个,报告期内新增立项252个,新增上线项目237个。招商银行在银浦江金融科技论坛上表示,未来将在大模型的基础上,通过统一管理和共享prompt等方式,结合以往累积的AI资产,构建通用大模型平台。

03

现阶段“不建议直接对客使用”;警惕中小金融机构“技术掉队”

中国工商银行首席技术官吕仲涛表示,当前阶段大模型并不成熟,因此,短期内不建议直接对客使用,应优先面向金融文本和金融图像分析理解创作的智力密集型场景,以助手形式,人机协同提升业务人员工作质效。

关于大模型应用落地,吕仲涛表示,目前业界尚无标准方法论,企业可按照场景通用化、专业化程度,分别使用基础大模型、行业大模型、企业大模型、任务大模型。四层模型训练数据规模和投入算力逐层递减,专业属性逐层增强。

其中,基础大模型由于投入数据量大、算力成本高、算法难度大,由头部AI公司进行建设,虽然通识能力较强,但其缺少金融专业知识,对金融场景应用有限。

对于大型金融机构而言,因金融数据海量,应用场景丰富,可引入业界领先的基础大模型,自建金融行业、企业大模型,考虑到建设周期较长,可采用微调形成专业领域的任务大模型,快速赋能业务,比如工行前期和鹏城实验室联创,通过微调,率先实现了人工智能大模型在行业内的应用。

对于中小金融机构而言,综合考虑应用产出和投入成本的性价比,可按需引入各类大模型的公有云API或私有化部署服务,直接满足赋能诉求。

度小满CTO许冬亮在麦肯锡“2023年中国金融业生成式人工智能发展论坛”上表示,大模型时代需警惕中小金融机构“技术掉队”。

他强调,大模型是科技公司的“必争之地”,做不做大模型将决定一家金融科技公司未来5到10年的技术发展水平。但训练大模型的门槛也非常高,他提醒在大模型时代需警惕中小金融机构“技术掉队”,中小机构与头部机构的数字化、智能化鸿沟有进一步扩大的可能。

中国农业银行研发中心北研平台三部处长赵存超表示,对于商业银行,不可能靠一个大模型打天下,需要多层次、分级分类的模型。这些模型该如何管理,如何进行共享、复用才能真正发挥集团军作战能力,需要探索。

他说,在金融业大模型的深度应用,尤其是嵌入到金融场景的深度应用,农行认为数据是核心,安全是前提,算力是基础,场景是动力,人才是关键,协作是保障。

同时,他提出,大模型生态的建设,需要同业之间联合共创共享、制订标准规范,需要产学研一起形成生态。

光大信托数据中心总经理祝世虎也认为,大模型是生产力的提升,在金融行业的落地路径要依靠大合作和大创新。通过大数据整合、大算力合作,在垂直领域精调模型,以小规模算力打造轻量级推理模型。


标签:金融业
本站声明:文章部分内容及图片来源于网络,相关内容仅供参考,不作为投资建议。同时我们尊重作者版权,若有疑问可与我们联系。侵权及不实信息举报邮箱daikuansuo@163.com